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A NON-LINEAR VERSION OF 
THE AMIR-LINDENSTRAUSS METHOD 

B Y 

S. NEGREPONTIS  AND A. TSARPALIAS 

ABSTRACT 

A non-linear version of the Amir-Lindenstrauss method of projections for 
weakly compactly generated Banach spaces is proved, that implies immediately 
the Benyamini-Rudin-Wage result on continuous images of Eberlein compact 
spaces. 

A Banach space is called weakly compactly generated (W.C.G.) if it is 

generated by a weakly compact subset. The theorem of Amir-Lindenstrauss [1], 

fundamental for the structure of such Banach spaces, states that for every 

W.C.G. Banach space X there is a set F and a bounded one-to-one linear 

operator T : X --~ c0(F); from this theorem, it follows that every Eberlein compact 
space (i.e., every weakly compact subset of some Banach space) is homeomor- 

phic to a weakly compact subset of co(F). A problem in the theory of Eberlein 

compact sets, not resolved either by the original Amir-Lindenstrauss result, or 

by a characterization of Eberlein compact sets given by Rosenthal in [6] (based 

on the Amir-Lindenstrauss theorem), was whether the continuous image of an 
Eberlein compact space is an Eberlein compact space. The original proof of this 

result, by Y. Benyamini, M. E. Rudin and M. Wage [2], is rather involved (a 

simpler proof was found subsequently by E. Michael and M. E. Rudin [5]). 

The main result of this paper, given in Theorem 2.9, is to prove a non-linear 

version of the Amir-Lindenstrauss method. It is interesting that Dowker's 

theorem on the possibility of interpolating a continuous function between a 

smaller upper-semicontinuous function and a larger lower-semicontinuous func- 

tion on a normal countably paracompact space plays a crucial role in the proof of 

this result. 

The usefulness of our result is seen in the fact that it implies immediately the 

Benyamini-Rudin-Wage theorem (Corollary 2.11). 
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§1. We will make use of the following facts. 

1.1. PROVOSmON ([1], lemma 1). Let II'll, Ill" III be two norms on R n. Then 

there exist z~, z2," • ", zn E R ~ such that for every A = (A1,. •., An) ~ R n we have 

where I A [ = (A ~ + A ~ + . . .  + A ~)1/2. 

1.2. PROPOSmON. Let B be a norm bounded subset of c0(F). Then the weak 

topology of B concides with the topology of pointwise convergence. 

1.3. THEOREM (Grothendieck). Let II be a compact space and B a bounded 

subset of C(~) .  Then B is weakly compact if and only if B is compact for the 

topology of pointwise convergence. 

(A proof of this theorem is given in [3] (p. 156).) 

§2. The main result is the (non-linear) Theorem 2.9. Most of the lemmas 

used to prove it are refinements of the corresponding lemmas in the 

Amir-Lindenstrauss paper [1]; consequently, we try to avoid repetition, in the 

proofs below, concentrating only on the new aspects of the proof. 

2.1. LEMMA. Let X be a linear space with two norms I1"11, 111" I11 such that 

IIx II- I11 x III for every x E X. Also, let Y be a horned space and R :  X ~ Y be a 

II1" Ill-bounded linear operator. Let also e > O, n a natural number, B a finite 

dimensional subspace of X,  and f ~, . . ",fro E (X, II-II)* of II-II n o r m  1. Then there is 

a separable subspace C of X that contains B such that i f Z  is a subspace of X with 

B C Z  and d i m ( Z / B ) =  n then there is a linear operator Tz :Z---~ C so that 

(i) IlZll-< l +  e, II lT[ l l_-<l+e,  
(ii) T(b)  = b for b E B, 

(iii) Ifk(z)--fk(Z(z))[<= ellzll for k = 1 , 2 , . . . , m ,  and 

(iv) IIRT(z)II <= e + flR(z)ll for z E Z with Illz II1 <= 1. 

PROOF. We set /3 = max{llfbNI, b ~B, Ilbll = 1}. Let P be a II'll-bounded 
projection of X into B. Then we have 

IIIP[II--</3 JleJJ. 

Let M > max{14n2lJPJJ • I/e, (211R II + 4X/nJJR II + 1). l /e} .  We choose b l ,"  ", 
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bp E B such that for every b ~ B with Ilbll -<M there is 1 =< h _---p such that 

I}l b - bh }i1 < 1/M. We set 

:~ = { ,  = ( , , , - . . ,  a . )  ~ R ° :  l*  I = v / a ,  ~+  " '  + a ~_-< n(1  + ¢s lIP II)}, 

and choose A 1,.. ", A q ~ E such that for every A E • there is 1 =< ] --< q such that 

la -,~I<I/M. 
On (X\{0})" we consider the following 3pq + (m + 4)n real functions: 

(l=<h <-p,l<=i <-n,l<=]<-q,l~=k N m ) .  

These functions define a function 

~ :  ( x \ { 0 } )  o ---, R3~*,m +% 

(We consider the supremum distance O on R3~÷~'~÷4~.) The image of q~ is 

separable; hence there is a sequence ~ ( x l , ' '  ", x~), ~ ( x ~ , . . . , x ~ ) , . . .  such that 

for every (z~, . . . ,  z , ) ~  (X\{0}f there is t such that 

p (¢(x  i,'" ", x ',), dp(z 1,. . . ,  z,)) < 1/M. 

Let C be the subspace of X generated by 

B O{x~,i = 1 , - . - , n ,  t = 1 ,2 , . . - } .  

Then C is separable. 
Let Z be a subspace of X such that B C Z  and d i m ( Z / B ) =  n. Then from 

Lemma 1.1 there are z~, . . . ,  z,  E ( I - P ) Z  such that 

for every a = (A,,-. ", I~). 

We choose x~ , . . . ,  x, E C such that 

p(¢(x, , . . . ,  x,), ¢(z1, . . . ,  zo)) < 1/M 

and define 

T : Z ~ C  by T b +  A,zi = b +  A,x,. 
i=1  i=1  
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The  opera tor  T satisfies conditions (i)-(iii) (cf. [1], l emma 2). 

For  (iv), let z = b + ET=~ ,~,z,/lll z, Ill with III z III <--1. We have 

 Jlf,- HJ [ if H,jifzrH, 
hence  I A I -< n (1 +/3 liP II), and consequent ly there is 1 =< j -< q with l A - A j I < 

1/m. Also II b II--< Ill b Ill --< III P Ill" Ill z Ill =</3 II P II < M, hence  there is 1 =< h _<- p such 
that lib - bo II < 1/M. 

Now, we have 

,=1 IIz, l l / l l -  R b÷~A,,=I <=211Rll'llfb-bhlll 

+IIR [i.]ll,=~ (x _ x:) x, ° 

a ' ~ l l l z ,  ltl- 

1 
--< (211R II ÷ ',/~ll R II ÷ 1 ÷ V ~ .  If R If ÷ 2,,/~11R I I )~  < e. 

Consequent ly ,  IIRT(z)rl <- e + IfR(z)[I. 

2.2. LEMMA. Let X be a linear space with two norms II" II, Ill" Ill, such that the 

Ill" Ill-unit ball U is II'll-weakly compact. Also, let Y be a normed space and 

R :  X ~ Y* a linear operator such that R is tll " Ill-bounded and R / 2 U :  2u--* Y* 
is II" If-weakly-weakly * continuous (i.e., continuous with respect to the II" II-weak 

topology that X defines on 2U, and the weak * topology of Y*). Also, let B be a 

finite dimensional subspace of X and f~, f2 , ""  ~ (X, II" fl)*. Then there is a linear 

operator T : X --* X such that 

(i) T ( X )  is II'll-sep arable, 

(ii) IITI[= rllTlrl = 1, 
(iii) Tb = b ]:or all b ~_ B, 

(iv) T * g  =/~ for k = 1 ,2 , . . . ,  and 

ffv) IIRT(x)ll<-_ IIR(x)lr ]:or x ~ X, with lftx tJl = 1. 
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PROOF. We may assume that tlx [I =-< Ill x ttl for every x E X (since U is weakly 
compact and hence II" II-bounded), and that lifo II = 1 for  n -- 1, 2 , - . . .  

We apply Lemma 2.1 for e = 1In and m = n, and let C, be the corresponding 

subspace of X. 

Let C be the I1"I] -closed subspace of X generated by U~=l C,. Then C is 

II" II-separable. 
For every subspace Z of X with B C Z  and dim(Z/B) = n we have a linear 

operator Tz:Z--+ C such that 

IlYzllal+ t 
n '  

Tb= b 

I h ( z ) -  f~(Zz(z)) l  <- l i l z  II 

IIRTz (z )l I <= 1/n + IIR(z)ll 

III T7 III - 1 + 1,  
n 

for b ~ B, 

f o r z E Z a n d k  = l , 2 , . . . , n ,  

for z E Z, lllz II1_-< 1. 

We extend Tz to the whole space X by setting Tz ( x ) =  0 for x E X\Z. 
We consider the set ~ of all the finite dimensional subspaces of X and we 

note that ~ is directed under set inclusion. Then the family {Tz I U : Z  E ~ }  is a 
net in (2U)  u. From Tychonof's product theorem it follows that the space (2U) t' 

with the product topology, i.e. with the topology induced by the II'll-weak 
topology of 2U, is compact. Consequently the net (Tz)z~ has a subnet, say 
(T,),~A, that converges pointwise to some T ~ (2U) t' in the II" II -weak topology. 

We extend T to the whole space X by the rule: 

T(x)={I ,  xH, T(x/,HxN,) if x E X , i f  x = 0 .  x ~ 0 ,  

Then T is linear and satisfies the conditions (i)-(iv) (cf. [1], lemma 3). For (v), let 

x ~ U and n a natural number. Then we have 

[[RTz(x)ll<= 1/n + ]]R(x)ll when dim(z/B)>= n. 

Hence ItRT,(x)ll<=l/n+llR(x)ll finally for all a, that is IRT,,(x)(y)l<= 
1/n + IlR(x)II for  every y E Y with IlY II -<- 1. 

We have T(x)= lim,~a To(x) (where the limit is taken with respect to the 

ll'll-weak topology) and T~(x)~2U. Consequently, by the l[-II-weak-weak* 

continuity of R 12U, it follows that 
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f eT(x ) (y ) f  =  iml nT (x)(y)J _-< + II n(x)ll .  

Hence [IRT(x)I[<= 1/n + IlR(x)ll for n = 1 ,2 , . . . ,  i.e., 

[IRT(x)I[ <= II R (x)ll. 

In the following, we consider X with the norm I[" II. ~f Z is a subspace of X we 
denote by x ( Z )  the density character of Z (i.e. the least cardinality of a dense 

subset of Z )  and if F is a subspace of X* we denote by x* (F)  the density 
character of F with respect to the weak* topology. Also, if ~: is an ordinal 

number we denote by I~:l the cardinality of ~¢. 

The next lemma is proved using Lemma 2.2, in a way similar to the proof of 

lemma 4 in [1]; the additional condition (v) is valid because of the weak-weak* 

continuity of R I U and the weak*-lower-semicontinuity of the norm. 

2.3. LEMMA. Let X and R : X  ~ Y* be as in Lemma 2.2, m an infinite 

cardinal, Z a subspace of X with x(Z) I  <- m and F a subspace of X *  with 

x* (F)  I <= m. Then there is a projection P : X ~ X such that 

(i) x ( P ( X ) ) ~  m, 

(ii) Ilel[-IIIP/]I = 1, 
(iii) P(z )  = z for z E z ,  

(iv) P * f  = f for f E F, and 

(v) lIRP(x)ll <= R ( x )  for x E X with lllx lit <= 1. 

2.4. LEMMA. Let X and R : X ~  Y be as in Lemma 2.2, m = x ( X )  and 

{x~,~ < m} be a dense subset of X.  Then there is a family of projections 

{Pc, co <= ~ < m } with the properties 

]IP~II = IIIP, I]I= ], x, EP~+,(X), x(P~(X))<-I¢I ,  

P,P, = P,P, = P, for co <= ~ < ~ < m, 

U P,+l(x)  is dense in P~(X) for ~o < ~ < m, 

IIRP~(x)II~[IR(x)II f o r c o < = ~ < m a n d x E X ,  with IIIx[ll~l.  

The proof of this lemma is based on Lemma 2.3 (cf. [1] lemma 6); here the last 

condition is valid from the weak-weak continuity of R I U and the weak*-lower- 

semicontinuity of the norm. 

2.5. LEMMA. Let X and R : X ~ Y* be as in Lemma 2.2, and {P~, co _-< ~: < 

m } be a family of projections of X as in Lemma  2.4. Then for every x ~ X we have 
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P, (x) = 11 • []-[i<m Pe (x ) for every lira it ordinal rh 

with co < ~ < m, and 

x --II- P, (x ) .  

Hence, for every x ~ X and ~ > 0 the set (~ : IlP~+~(x)- Pt(x)l  [ > s } is finite. 

PROOF. Let ~ > 0  and ~/ a limit ordinal, to < 7 / < m .  Since P , ( X ) =  

U,<~Pt(X) ,  there are ~" < r/, and z E P~(X) such that I l P , ( x ) - z  11 < Then 

for every ~c with ~" < ¢ < r/ we have 

IlP~(x)- P~(x)l I <= IlP~(x)- z II + 11 z - P, (x)[I 

= {[P,P,(x)-  P,(z)l I + [1 z - P, (x)]l =< ]] P, ( x ) -  z {l + tlz - P,(x)[[ < s. 

We will make use of (a special case of) the following fact due to Dowker (cf. 

[4], p. 172). 

THEOREM. Let ~ be a paracompact space, ~1 : l-l ~ R an upper- 

semicontinuous and q%:f~--~R a lower-semicontinuous function such that 

cbt(p ) < dp2(p ) for every p E f L  Then there is a continuous function f : f l  ~ R such 

that qbl(p) < f ( p )  < qb2(p) for every p E l ) .  

2.6. LEMMA. Let M be a metric space, poe  M and ~:  M---~R a lower- 

semicontinuous function such that qb(p)>0 for every p Ef~, p ~  p,, and 

• (po) = O. 
Then there is a continuous function f : M ~ R, such that 

(i) f ( p ) > 0  f o r p E M ,  p J p o ,  

(ii) f ( p o )  = O, and 

(iii) f (p )  <--_ alp(p) for p E M. 

PROOF. We set f l =  M\{po}. Then, l'l is a paracompact space and hence 

from Dowker's theorem, there is a continuous function g :f t--~R such that 

0 < g (p) < qb(p) for every p ~ 12. We consider the function h : 12 --~ R defined by 

h ( p ) =  p(p, po) (where p(p, po) is the distance between p and p0); then h is 

continuous, h ( p ) > 0  for every p E fl, and h(po) = 0. Now we set 

fmin{g(p) ,h(p)}  if p E f l ,  
f ( p ) =  t 0 if pJpo .  

Fhe function f satisfies the conclusion of the lemma. 
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2.7. LEMMA. Let M be a compact metric space, p,~E M and Op:M--->R a 

lower-semicontinuous function such that Op(p) > 0 for every p E M with pC po, 

and ~(po) = O. Then there is a one-to-one, continuous function s : M---> c,~ such 

that 

IIs(p)L,_- < ~(p)  forp E M 

(where we consider the weak topology on c,). 

PROOF. From Lemma 2.6 there is a continuous function f:M---> R such that 

f ( p ) > 0  for every p / p , , ,  f(po) = 0, and f(p)_< qb(p) for every p E M. 

Let g~, g2 , " "  be a sequence of real continuous functions on M separating 

points of M, with IIg-II = 1, n = 1 , 2 , . . . .  We set 

s ( p ) :  ( f ( p ) , f ( p ) g , ( p ) , f ( p ) g 2 ( p ) , . . . )  forp  E M. 

Then it is easy to verify, using Proposition 1.2, that s satisfies the required 

conclusion. 

2.8. LEMMA. Let X and R : X ---> Y* be as in Lemma 2.2. Then there is a set F 

and a function s:R(U)--~co(F)  weak*-weak continuous, one-to-one and 

IIsR(x)L,,,,<-IIxl[ for every x E U. 

PROOF. The proof will be by induction on the density character of X. 

(1) x ( X ) =  n0. Then U is weakly compact and metrizable. Hence R ( U )  is 

weak* compact and metrizable. We set 

q'(p)= inf{llxll:x ~ U , R ( x ) = p }  forp  E R ( U ) .  

Then 

(i) qb(p)__>0, and ~ ( ,p )=0  if and only if p =0 .  Indeed we have qb(0)=0, 

because R(0 )=  0. Now let p / 0 .  Since R t U is weakly-weakly* continuous and 
U is weakly closed, we have that the set R-~({p})N U is weakly closed, and 

hence norm-closed. The element 0 does not belong to R '({p}) fq U and so the 

distance of 0 from this set is strictly positive, that is dp(p)> 0. 

(ii) The function qb is lower-semicontinuous (we omit the simple proof). 

Consequently it follows from Lemma 2.7 that there is a function s :R(U)- -> Co 

weakly*-weakly continuous, one-to-one, and 

[[ s (p ) lt., _---< qb(p) forp  E R(U) .  

i.e., IlsR(x)L,~llx[[ for x E U. 
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(2) Let x (X)  = m >~to. We suppose that the conclusion is valid for every 

infinite cardinal less than m. 
From Lemmas 2.4 and 2.5 there is a family of projections {P~ :to =< ~: < m} 

such that 

x(Pc(X))<_l~ I, l iP, ii = ii iPc II1 = 1, 

for every x E X and e > 0 the set {~ :11 Pc+, - Pc (x)ll > ~ } is finite, Pc (x) = 1]-[]- 

lim~<cP¢(x) for every x ~ x and to < s c < m, ~ limit ordinal, and 

x = II. I I - [~mec(x)  

Let U,~ be the Ill" Ill -unit ball in Po(X). Then U~ is I1" II-weakly compact and 

Po(U)CU~,  since ]IIP~II}= 1. Also for to_-<~:<m, let UC+I be the ilI.H}-unit 

ball in the space ½(Pc+,-P~)(X). Then Uc+l is II'll-weakly compact and 

½(P~+~- Pc)(U) C Uc+~, because 1]]½(Pc+,- Pc)III ---< 1. 
We apply the induction hypothesis 

for eo(x), 

for ½(P,+1- Pc)(X), 

and let so, : R ( Uo, )---~ Co, 

Ro = R ] P~ (X), and also 

Rtz+,=R]½(Pt~+l-Igc)(X), to<=~<m, 

$~+I:R(U¢+,)-->Co(F~+I), to <-~ < m  

be the resulting functions. 
We consider the discrete union F = N U (U~c<,~F~+,) and define for x ~ U, 

o(x)(n)  = [s~RP~,(x)](n) for n E N. 

o(x)(~/) = [sc+,R(½(e,+,- P~))(x)](~,) for - / ~  rc+l. 

Then u(x) belongs in co(F). Indeed, let e > 0. Then the set 

{n E N : [ o ( x ) ( n ) l >  e}=  {n E N : [ [ s ~ R P , ( x ) ] ( n ) l >  s} 

is finite, since s,~RP~,(x)E Co. 
Also, for every ~, to _-< ~ < m the set 

{'y E ['c+, :l ° (x)( 'Y)I < 8} = {'y E re+, [[sc+IR•(Pt+,- Pc))(x)] (Y)[ > e} 

is finite, since sc+iR(½(Pc+,- P~))(x)E co(Fc+~). 

The set 
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{~ ~ o, : IIs~+,R (½(P¢+, - Pe))(x)tk,,.,+,) > e} 

is finite, since by induction hypothesis we have 

lls,+,R (~(e,+, - P, ))(x )ll~,,,r°+,) <-- ~ll P,+,(x ) - e,(x )ll 

and the set {~:[[Pe+l(x)-P~(x)lt>2e} is finite. Consequently, indeed 

t, (x) ~ c0(r). 
We observe that the set o(U) is bounded with respect to the norm, as a subset 

of co(F). (In fact, U is weakly compact and hence tt"ll-bounded- Let 0 be a 

I1 II-bound of U. Then for x E U, n E N and y E F~+~ we have 

Io (x ) (n ) l<-_ l l so ,RP. (x ) l l . ,<- t lP ,  o(x) l l<-I lx l[<-o,  and 

] o(x)(3')l-< IIs~+,R(½(P,+,(x)- Pe(x)))lt.,,,r,)<= ½]]P,+l(x)- Pe (x)ll =< Itx II--< 0; 

hence IIo(x)lt.,,(r)= < 0 for x E U.) 

The function o is weakly continuous, because R IU is weakly-weakly* 

continuous, s. and se+~ are weakly*-weakly continuous, P.  and ½(P~+~- P~) are 

weakly continuous, and the weak topology on the bounded subsets of c0(F) is 

identified with the pointwise convergence topology (1.2). The function u has the 

following property: u ( x ) =  o(y) if and only if R ( x ) =  R(y) .  Indeed, let x j  y 

and R ( x ) =  R(y) ;  then we have 

- y  - y  R x (,,,x.,,,)ll 
and hence RPe(x) = RPe(y). From the definition of u, it follows that u ( x ) =  

u(y). Conversely, let u ( x ) =  u(y). Then we have 

s~RP~ (x) = s~RP~ (y) and 

S~+IR (½(P~+I(X) - P~ ( x ) ) )  = s~+lR (½(P(+I (y )  - P~ (y))), 

and hence 

RP, o (x) = RP~ (y) and 

R(P~+,(x)- P~(x)) = R (P~+,(y)- P~(y)), 

because s~ and s~+l are one-to-one. 

It follows that R P ~ ( x -  y ) =  0, and 

R P ~ + ~ ( x - y ) = R P ~ ( x - y )  for every o) =< ~: < m, 

and hence that RP~ (x - y) = 0 and every w -< ~ < m. 
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It now follows that R(½(x -  y ) ) =  lime<,,RPe(½(x- y ) ) =  0, i.e., that 

R ( x ) =  R(y).  

We define s :R (U)--~ co(F) by sR (x) = o (x). It follows for the properties of o 

that the function s is well-defined and one-to-one. 

It is easy to verify that the function s is weakly*-weakly continuous and 

Ilsg(x)Ilc,,(v)<-llxll forx E u. 

2.9. Tr~EOREM. Let X be a Banach space, K a weakly compact subset of X 

such that the closed linear hull of K is X. Also, let Y be a Banach space, and let 

T : X * ---~ Y* be a linear operator continuous with respect to the norm and to the 

weak * topologies. Then there are a set F and a function s : T(Bx.)---~ c0(F) 

weakly *-weakly continuous, one-to-one (and hence, a weak *-weak topological 

embedding) such that 

IIsT(x*)ll <= sup lx*(x)l [orx * E B×. 
x G K  

(where Bx.  denotes the unit ball of X*) .  

PROOF. We consider K with the weak topology. As is known (cf. [3], p. 146, 

prop. 1) we have that the space C ( K )  is weakly-compactly generated. (The same 

result follows easily from Lemma 2.8 as well, using the Stone-Weierstrass 

theorem.) We consider the linear operator 

h : X*-"~ C(K)  

defined by A(x*) = x* I K. Since K spans X, the operator A is one-to-one. By the 

Alaoglou-Bourbaki theorem, it follows that A(Bx.), with respect to the point- 

wise convergence topology, is compact. Also A(Bx.) is bounded in the uniform 

norm of C(K) .  Therefore, by the Grothendieck Theorem 1.3, A(Bx-) is a weakly 

compact subset of C(K) .  It follows that the function A IBx. is weakly*-weakly 

continuous. In A(X*) we define a second norm by 

III A(x*) l l l  = Ilx*ll. 

Then the Ill-Irl-unit ball U is weakly compact because U = A(B,,.). The operator 

m: X* (m(x*), Ill" ill) is an isometry. We set 

R = TA-I:A(X*)--~ Y*. 

Thus the hypothesis of Lemma 2.8 is satisfied (for A(X*) and for I1" II the uniform 
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norm of C ( K )  restricted to A(X*)). Hence, there are a set F and a function 

s : R ( U )  = T(Bx.)---~ co(F) weak-weak* continuous, one-to-one, and 

IIsR (/)L,F,=< Ilfll f o r f E  U, 

hence, IIsT(x*)lL,r --< supx~K[x*(x)[ for x* ~ mx.. 

2.10. COROLLARY. Let X be a weakly compactly generated Banach space and 

Y a Banach space such that Y embeds isomorphically in X. Then the weak * 

compact subsets of Y*  are Eberlein compact. 

PROOF. It is enough to prove that there is e > 0 such that the set 

B~..= {y* E Y*:lly*ll_-< e} 

is Eberlein compact. Let T:  Y ~ X  be an isomorphic embedding. Then 

T * : X * ~  Y* is onto, continuous with respect to the norm, to the weak* 

topologies. 

Since T* is onto, it follows from the open mapping theorem that there is ~ > 0 

such that B~,. C T*(Bx.).  

From Theorem 2.9 there are a set F and a function 

s : T*(Bx.)---* co(F) 

weak*-weak continuous and one-to-one. 

Consequently, B~.. is Eberlein compact. 

2.11. COROLLARY (Benyamini-Rudin-Wage [2]). Let 12 be an Eberlein com- 

pact space, S a Hausdorff topological space, and f : 12 ~ S continuous and onto. 

Then S is an Eberlein compact. 

PROOF. The space C(12) is weakly compactly generated and C(S)  embeds 

isomorphically in C(12). Hence it follows from Corollary 2.10 that the unit ball of 

C(S)  with respect to the weak* topology is Eberlein compact. The space S 

embeds in the unit ball of C(S)*. Thus S is Eberlein compact. 

2.12. REMARK. The existence of a bounded linear operator T:X*---* co(F), 

such that T is one-to-one and weakly*-weakly continuous implies that X is 

W.C.G. This fact, together with Rosenthal's well-known example (in [6]) of a 

non-W.C.G, subspace of a W.C.G. space, explains why Theorem 2.9 cannot be 

linear. 

2.13. REMARK. Recently M. E. Rudin has proved that if a space is normal, 

countably paracompact, and homeomorphic to a subspace of c0(F) in its weak 
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topology,  then every perfect (i.e. such that its inverse set function maps  compac t  

sets to compact  sets) image of  this space is h o m e o m o r p h i c  with a subspace co(F) 

in its weak topology.  It is interesting in this connect ion that in the proof  of our  

basic theorem 2.9 we need an interpolat ion proper ty  of semicont inuous  func- 

tions that in fact is equivalent  to the proper ty  of normal i ty  together  with 

countab le  paracompac tness  (e.g. see p. 172 in [4]); this raises the quest ion 

whether  there can be some more  essential connect ion between our  methods ,  and 

results established by M. E. Rudin.  

A d d e d  in proof. It was pointed out  by the referee that another  p roof  of the 

B e n y a m i n i - R u d i n - W a g e  T h e o r e m  appears  in: S. P. Gulko,  On properties of  

subsets o f  Z-products, Soviet Math.  Dokl.  18 (1977), 1438. 
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