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A NON-LINEAR VERSION OF
THE AMIR-LINDENSTRAUSS METHOD

BY
S. NEGREPONTIS AND A. TSARPALIAS

ABSTRACT

A non-linear version of the Amir-Lindenstrauss method of projections for
weakly compactly generated Banach spaces is proved, that implies immediately
the Benyamini-Rudin-Wage result on continuous images of Eberlein compact
spaces.

A Banach space is called weakly compactly generated (W.C.G.) if it is
generated by a weakly compact subset. The theorem of Amir-Lindenstrauss [1],
fundamental for the structure of such Banach spaces, states that for every
W.C.G. Banach space X there is a set I' and a bounded one-to-one linear
operator T : X — ¢,(I); from this theorem, it follows that every Eberlein compact
space (i.e., every weakly compact subset of some Banach space) is homeomor-
phic to a weakly compact subset of ¢o(I'). A problem in the theory of Eberlein
compact sets, not resolved either by the original Amir-Lindenstrauss result, or
by a characterization of Eberlein compact sets given by Rosenthal in [6] (based
on the Amir-Lindenstrauss theorem), was whether the continuous image of an
Eberlein compact space is an Eberlein compact space. The original proof of this
result, by Y. Benyamini, M. E. Rudin and M. Wage [2], is rather involved (a
simpler proof was found subsequently by E. Michael and M. E. Rudin [5]).

The main result of this paper, given in Theorem 2.9, is to prove a non-linear
version of the Amir-Lindenstrauss method. It is interesting that Dowker’s
theorem on the possibility of interpolating a continuous function between a
smaller upper-semicontinuous function and a larger lower-semicontinuous func-
tion on a normal countably paracompact space plays a crucial role in the proof of
this result.

The usefulness of our result is seen in the fact that it implies immediately the
Benyamini-Rudin-Wage theorem (Corollary 2.11).
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§1. We will make use of the following facts.

1.1. ProposiTion ([1], lemma 1). Let ||-|, |l |ll be two norms on R". Then
there exist z,, 22, "+, 2, € R" such that for every A = (A,,- -+, A,) ER" we have

320
PR

where I)\l:()‘%q- A2t - .+/\§)1/2.
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1.2. ProrosiTioN. Let B be a norm bounded subset of co(I'). Then the weak
topology of B concides with the topology of pointwise convergence.

1.3. Tueorem (Grothendieck). Let {} be a compact space and B a bounded
subset of C(Q)). Then B is weakly compact if and only if B is compact for the
topology of pointwise convergence.

(A proof of this theorem is given in [3] (p. 156).)

§2. The main result is the (non-linear) Theorem 2.9. Most of the lemmas
used to prove it are refinements of the corresponding lemmas in the
Amir-Lindenstrauss paper [1]; consequently, we try to avoid repetition, in the
proofs below, concentrating only on the new aspects of the proof.

2.1. Lemma. Let X be a linear space with two norms |||, ||| - ||l such that
x|z |l|x ||| for every x € X. Also, let Y be a normed space and R:X — Y be a
Il - |||-bounded linear operator. Let also € >0, n a natural number, B a finite
dimensional subspace of X, and f,, - - -, f. € (X, ||-)* of || || norm 1. Then there is
a separable subspace C of X that contains B such that if Z is a subspace of X with
B CZ and dim(Z/B) = n then there is a linear operator T : Z — C so that

Q) ITI=s1+¢ ITlI=1+e,

@ii) T(b)=>b for b € B,

(i) |fi(2)=f(T@)| =€l z| for k=1,2,---,m, and

(iv) |[RT)||S e +||R)| for z € Z with |||z|||= 1.

Proor. We set B8 =max{|||b|ll, b€ B, |b|=1}. Let P be a ||-|-bounded
projection of X into B. Then we have

[IPlil= 8P|
Let M >max{14n?|P|-1/e, 2|R |+ 4Vn|R||+1)-1/e}. We choose by, -,
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b, € B such that for every b € B with ||b||= M there is 1 =h =p such that
b — b l| < 1/M. We set

S={A=0A, ", A)ER":A|=VAi+ --- +A2=n(1+ B| P|D},

and choose A, -+, A% €3, such that for every A € 3 there is 1 =j = q such that
A —A|<1/M.
On (X\{0})" we consider the following 3pq + (m + 4)n real functions:

Sl (Sl #(5)

Il Hlxelll, Toglix:],  loglfix: ]l R(bh+2)‘] ;CHI)"’

These functions define a function
@ (X \{0})" —» RPPaHemrn,

(We consider the supremum distance p on R*7 ™) The image of & is
separable; hence there is a sequence ®(x1,- -, x.), P(x1,- -+, x%), - such that
for every (zi,"**, z.) € (X\{0})" there is ¢ such that

p(d)(xl'7 Y x:l), d)(Zl, ST Z,.))< 1/M.
Let C be the subspace of X generated by
BU{xii=1--nt=12--}

Then C is separable.
Let Z be a subspace of X such that B CZ and dim(Z/B)= n. Then from
Lemma 1.1 there are z,,- -, 2. € (I = P)Z such that

Sagl=rie [[Eapiplll=an

for every A = (A4, 5, An).
We choose x,, - - -, x, € C such that

p(q)(xb v "x")7¢(zl9 o ',Z"))< 1/M

and define

T:Z—C by T(b‘*‘iA.Zz):b‘f'iA.xn
i=1
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The operator T satisfies conditions (i)-(iii) (cf. [1], lemma 2).
For (iv), let z = b + 2/, Aizi/||| z: ||| with |||z ||| = 1. We have

b= ety

ll z:

=lir-pii-||| o+ 3 gl =0+ o121

hence |A|=n(1+ B]|P|), and consequently there is 1 =j =g with |A —\/| <
M. Also |b|| =[]l =]l|Plll- Il z]]| = B||P|| < M, hence there is 1 = h = p such
that ||b — b. || < 1/M.

Now, we have

|=(e+ S apzp)|-[r(o+ 5 agzp)] s2m -

o= (o S 2|

e e[S -ungzy
Rl 3 g (-l

= QIR |+ Va|R|+ 1+\/Z-IIR||+2\/7:HR||)$<5.

1[5 -y

Consequently, | RT(z)|= ¢ +||R(2)].

2.2. LemMA. Let X be a linear space with two norms || -|, ||| - |||, such that the
Il -unit ball U is ||-|-weakly compact. Also, let Y be a normed space and
R :X — Y* a linear operator such that R is ||| - [[|-bounded and R 2U :2U — Y*
is || - |-weakly-weakly * continuous (i.e., continuous with respect to the | -|-weak
topology that X defines on 2U, and the weak * topology of Y*). Also, let B be a
finite dimensional subspace of X and f., f>,- - - € (X, |)*. Then there is a linear
operator T:X — X such that

(i) T(X) is || - |-separable,

@ (Th=MWTIl=1,

(i) Tb = b for all b € B,

(v} T*fi=fc fork=1,2,---, and

) IRTG)I=[Rx) for x € X, with |[|x]||=1.
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Proor. We may assume that ||x ||| x ||| for every x € X (since U is weakly
compact and hence | - [-bounded), and that ||f.|=1for n =1,2,---.

We apply Lemma 2.1 for ¢ = 1/n and m = n, and let C, be the corresponding
subspace of X.

Let C be the | |-closed subspace of X generated by U, C.. Then C is
|+ |-separable.

For every subspace Z of X with B CZ and dim(Z/B)= n we have a linear
operator T :Z — C such that

1 1

Tb=b forb € B,
]fk(z)—fk(Tz(z))léiqu forz€Zandk =1,2,---,n,

IRT(2)|=Un +|R@G)| forzez [|zll=1.

We extend T to the whole space X by setting T (x)=0 for x € X\Z.

We consider the set B of all the finite dimensional subspaces of X and we
note that @ is directed under set inclusion. Then the family {7 l U:ZeRB}isa
net in 2U)". From Tychonof’s product theorem it follows that the space QU)"
with the product topology, i.e. with the topology induced by the | -|-weak
topology of 2U, is compact. Consequently the net (7z)zea has a subnet, say
(T.)aca, that converges pointwise to some T € (2U)" in the | - [-weak topology.

We extend T to the whole space X by the rule:

{IlixIIlT(x/HIxHI) if x€EX, x#0,
T(x)=
0 if x=0

Then T is linear and satisfies the conditions (i}~(iv) (cf. [1], lemma 3). For (v), let
x € U and n a natural number. Then we have

[RTz(x)|=1/n+|R(x)]  when dim(z/B)=n.

Hence |RT.(x)||=1/n+||R(x)| finally for all e, that is |[RT.(x)(y)|=
1/n +||R(x)| for every y € Y with [[y|=1.

We have T(x)=lim.eca T.(x) (where the limit is taken with respect to the
|- |l-weak topology) and T.(x)E€2U. Consequently, by the ||-|-weak-weak*
continuity of R |2U, it follows that
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|RT(x)(y)| = lim | RT.(x)(y)| = 1/n + [ R(x)]

Hence |[RT(x)||=1/n +||R(x)|| for n =1,2,---, i.e.,
IRT ()l = [[R(x)l.

In the following, we consider X with the norm || - |. If Z is a subspace of X we
denote by x(Z) the density character of Z (i.e. the least cardinality of a dense
subset of Z) and if F is a subspace of X* we denote by yx*(F) the density
character of F with respect to the weak™ topology. Also, if ¢ is an ordinal
number we denote by |¢] the cardinality of ¢.

The next lemma is proved using Lemma 2.2, in a way similar to the proof of
lemma 4 in [1]; the additional condition (v) is valid because of the weak-weak*
continuity of R I U and the weak*-lower-semicontinuity of the norm.

23. Lemma. Let X and R: X —> Y™ be as in Lemma 2.2, m an infinite
cardinal, Z a subspace of X with x(Z)|=m and F a subspace of X* with
X *(F)| = m. Then there is a projection P:X — X such that

M x(PCX)=m,

@ [P|=lPIll=1,

(iii) P(z)=1z for z € Z,

(iv) P*f=ffor fEF, and

(v) |RP(x)|=R(x) forx € X with |||x]]|=1.

24. LEMMA. Let X and R:X — Y be as in Lemma 2.2, m = x(X) and
{x, £ <m} be a dense subset of X. Then there is a family of projections
{P, w = & < m} with the properties

IPl= Pl =1,  x€PulX), x(P(X)=I£],

P§Pn=P,,P§=Pn forw§n<§<m,

U P,.i(X)isdensein P,(X) forw < ¢ <m,

w=n<¢

[RP,()|ZS|Rx)| foro=é<mandx €X, with||x||=1.

The proof of this lemma is based on Lemma 2.3 (cf. [1] lemma 6); here the last
condition is valid from the weak-weak continuity of R | U and the weak *-lower-
semicontinuity of the norm.

25. Lemma. Let Xand R: X — Y* be as in Lemma 2.2, and {P,w = ¢ <
m} be a family of projections of X as in Lemma 2.4. Then for every x € X we have
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P,(x)=|" H-l{im P.(x) forevery limit ordinal ,
<7
with v <n <m, and
x = |- Him P, ).

Hence, for every x € X and & >0 the set {£ :||Pei(x)— P(x)||> €} is finite.

Proor. Let £>0 and 7 a limit ordinal, w <n <m. Since P,(X)=
U, -, P.(X), there are { <=, and z € P,(X) such that || P,(x)— z || < /2. Then
for every ¢ with { <¢ <7 we have

1Pe(x) = P ()= Pe(x) - z [+ ][z = P (x)]
=[PP, (x) = P(2)| + ]|z = P,()| = | P, (x) - z[| + ]|z = Pu(x)f < e

We will make use of (a special case of) the following fact due to Dowker (cf.
(4], p. 172).

THEOREM. Let € be a paracompact space, $,:Q0—R an upper-
semicontinuous and ©,:Q—R a lower-semicontinuous function such that
D,(p) < Dyp) for every p € Q. Then there is a continuous function f : {1 — R such
that &,(p)<f(p)<Pp) for every p € ).

2.6. LEeMMA. Let M be a metric space, pp€M and ®:M—R a lower-
semicontinuous function such that P(p)>0 for every pE, p# p,, and
P(po) = 0.

Then there is a continuous function f: M — R, such that

(i) f(p)>0 forpEM, p# p,

(i) f(po)=0, and

(i) f(p)=P(p) forpe M.

ProOF. We set Q= M\{p,}. Then, Q is a paracompact space and hence
from Dowker’s theorem, there is a continuous function g:Q—R such that
0<g(p)<P(p) for every p € Q. We consider the function h : {1 — R defined by
h(p)=p(p,po) (Where p(p,po) is the distance between p and p,); then h is
continuous, h(p)>0 for every p € Q, and h(p,) =0. Now we set

min{g(p), h(p)} if pEQ,
flp)=

0 if p# po.

The function f satisfies the conclusion of the lemma.
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2.7. LEMMA. Let M be a compact metric space, po€EM and ¥: M >R a
lower-semicontinuous function such that ®(p)>0 for every p € M with p# po,
and ®(p,) =0. Then there is a one-to-one, continuous function s : M — ¢, such
that

Is@)l, =)  forpeM

(where we consider the weak topology on c,).

Proor. From Lemma 2.6 there is a continuous function f: M — R such that
f(p)>0 for every p# po, f{ps)=0, and f(p)=D(p) for every pEM.

Let g1, 82, - - be a sequence of real continuous functions on M separating
points of M, with ||g.[|=1, n =1,2,---. We set

s0)= (). f0)i0) L) ) porpem

Then it is easy to verify, using Proposition 1.2, that s satisfies the required
conclusion.

2.8. LEemMmA. Let X andR :X — Y™ be asin Lemma 2.2. Then thereisa set I’
and a function s:R(U)— co(l') weak *-weak continuous, one-to-one and
IsR (x)lcar =[x | for every x € U.

ProOF. The proof will be by induction on the density character of X.
(1) x(X)=N,. Then U is weakly compact and metrizable. Hence R(U) is
weak* compact and metrizable. We set

P(p)=inf{||x]:x € U, R(x)=p} forp € R(V).
Then

(i) ®(p)=0, and P(p)=0 if and only if p =0. Indeed we have $(0)=0,
because R(0) = 0. Now let p# 0. Since R l U is weakly-weakly* continuous and
U is weakly closed, we have that the set R™'({p}) N U is weakly closed, and
hence norm-closed. The element 0 does not belong to R '({p}) N U and so the
distance of 0 from this set is strictly positive, that is ®(p)>0.

(i) The function @ is lower-semicontinuous (we omit the simple proof).
Consequently it follows from Lemma 2.7 that there is a function s: R(U)— ¢,
weakly*-weakly continuous, one-to-one, and

ls@).=®p) forp € R(U),

ie., [sSR(x)|l.=|x]| for x € U.
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(2) Let x(X)=m >N,. We suppose that the conclusion is valid for every
infinite cardinal less than m.

From Lemmas 2.4 and 2.5 there is a family of projections {P;:w = ¢ <m}
such that

x(Pe(XN=1él, NPA=MIPl=1,

for every x € X and & >0 the set {¢:[|P;.i — Po(x)||> ¢} is finite, Po(x)=|"|-
lim,-.P;(x) for every x € X and w < ¢ <m, ¢ limit ordinal, and

x = - Him Py(x).

Let U, be the || -||l-unit ball in P,(X). Then U, is |- |-weakly compact and
P.(U)CU., since ||| P, || =1. Also for w =& <m, let Ug.i be the ||| - |||-unit
ball in the space 3(Pewi— P)(X). Then U, is |- |-weakly compact and
2(Peo1— P)(U) C Ug., because |||3(Pe— Pe) || = 1.

We apply the induction hypothesis

for P,(X), R,=R IPw (X), and also
for 3(Pesi— P)(X), Revi=R[3(Pei—P)(X), w=¢&<m,
and let s, : R(U.)— co,
Se+1: R(Uger) = co(le11), w=¢<m

be the resulting functions.
We consider the discrete union I' = NU (U, z¢<m¢.1) and define for x € U,

v(x)(n) = [s.RP,(x)l(n)  for n EN.
v(x)(¥) = [5e1RG(Peri — P)(X)](v)  for v El
Then v(x) belongs in ¢o(l'). Indeed, let £ >0. Then the set
{n EN:Ju(x)(n)|>e}={n € N:|[s.RP.(x)](n)| > ¢}

is finite, since s.RP.(x) € co.
Also, for every & o = ¢ <m the set

{y €ETerr:[o(x)(¥)| < e} ={y ETcarl[5: 1R G(Pesr — P))(x)1(v)| > €}

is finite, since s;+1RG(Pev1— Pe))(x) € co(l¢s1).
The set
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{§ Zw :I|S§+1R(%(Pg+1 - Pé))(x)”%(l'g“) > 8}

is finite, since by induction hypothesis we have

[} s+ : RG(Pesi — Ps))(x)“c(.(rw) 3| Peci(x) — Pe(x)||

and the set {£:||P..(x)— P:(x)||>2¢} is finite. Consequently, indeed
v(x) € co(l).

We observe that the set v (U) is bounded with respect to the norm, as a subset
of co('). (In fact, U is weakly compact and hence |- ||-bounded. Let 6 be a
|- |-bound of U. Then for x € U, n €N and y € [',,, we have

[o(x)(n)| =||s.RP.(x)|, = P.(x)|=]x[[=6, and
[P = |51 RG(Peer(x) = Pe () eorp = 3 Per(x) — Pe(x)[[ =l x || = 65

=06 for x € U)

The function v is weakly continuous, because R l U is weakly-weakly™*
continuous, s, and s.., are weakly*-weakly continuous, P., and 3(P;.,— P,) are
weakly continuous, and the weak topology on the bounded subsets of co(I') is
identified with the pointwise convergence topology (1.2). The function v has the
following property: v(x)= v(y) if and only if R(x)= R(y). Indeed, let x# y
and R(x)= R(y); then we have

|red=ip) = = (=)

and hence RP;(x)= RP,(y). From the definition of v, it follows that v{(x)=
v(y). Conversely, let v(x)= v(y). Then we have

hence |v(x)

s.RP,(x)=s,RP,(y)  and
$e 1R @(Peii(x) = Pe(x))) = 51 R G(Peoa(y) — Pe(y))),
and hence
RP,(x)= RP,(y) and
R(Pe.i(x) = Pe(x)) = R(Peua(y) — Pe(y)),

because s, and s;.; are one-to-one.
It follows that RP,(x —y)=0, and

RP;.i{x —y)= RP(x - y) forevery w = £ <m,

and hence that RP,(x —y)=0 and every w = ¢ <m.
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It now follows that R(3(x — y)) = lim;<, RP,(3(x — y)) =0, i.e., that
R(x)=R(y).

We define s : R(U)— co(I') by sR(x) = v(x). It follows for the properties of v
that the function s is well-defined and one-to-one.
It is easy to verify that the function s is weakly*-weakly continuous and

| SR (x)leory =1 x | forx € U.

2.9. THEOREM. Let X be a Banach space, K a weakly compact subset of X
such that the closed linear hull of K is X. Also, let Y be a Banach space, and let
T:X*-—> Y* be a linear operator continuous with respect to the norm and to the
weak * topologies. Then there are a set ' and a function s:T(Bx-)— coI’)
weakly *-weakly continuous, one-to-one (and hence, a weak *-weak topological
embedding) such that

IsTe)|=suplx*(x)|  forx* € Bx-

(where Bx- denotes the unit ball of X*).

Proor. We consider K with the weak topology. As is known (cf. [3], p. 146,
prop. 1) we have that the space C(K) is weakly-compactly generated. (The same
result follows easily from Lemma 2.8 as well, using the Stone-Weierstrass
theorem.) We consider the linear operator

A:X*— C(K)

defined by A(x*) = x *I K. Since K spans X, the operator A is one-to-one. By the
Alaoglou-Bourbaki theorem, it follows that A(Bx-), with respect to the point-
wise convergence topology, is compact. Also A(Bx-) is bounded in the uniform
norm of C(K). Therefore, by the Grothendieck Theorem 1.3, A(Bx-) is a weakly
compact subset of C(K). It follows that the function A'Bx: is weakly*-weakly
continuous. In A(X*) we define a second norm by

ITAG = llx*])-

Then the ||| - |||-unit ball U is weakly compact because U = A(Bx-). The operator
A:X* > (AXH, - is an isometry. We set

R=TA " AX*)—>Y*

Thus the hypothesis of Lemma 2.8 is satisfied (for A(X*) and for || - || the uniform
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norm of C(K) restricted to A(X*)). Hence, there are a set I' and a function
s : R(U) = T(Bx-)— co(I') weak-weak™* continuous, one-to-one, and

IsR(f)

hence, (ST (x*)||cary = supeex| x *(x)| for x* € Bx-.

coll’) = Ilf“ forf € U»

2.10. CoroLLARY. Let X be a weakly compactly generated Banach space and
Y a Banach space such that Y embeds isomorphically in X. Then the weak *
compact subsets of Y* are Eberlein compact.

Proor. It is enough to prove that there is £ >0 such that the set
v={yre Y :y*[=e}

is Eberlein compact. Let T:Y— X be an isomorphic embedding. Then
T*:X*— Y* is onto, continuous with respect to the norm, to the weak*
topologies.

Since T* is onto, it follows from the open mapping theorem that there is ¢ >0
such that B%.C T*(Bx-).

From Theorem 2.9 there are a set I' and a function

s:T*(Bx:)— co(l')

weak *-weak continuous and one-to-one.
Consequently, B~ is Eberlein compact.

2.11. CoroLLARY (Benyamini-Rudin-Wage [2]). Let Q be an Eberlein com -
pact space, S a Hausdorff topological space, and f:Q1— S continuous and onto.
Then S is an Eberlein compact.

Proor. The space C(Q1) is weakly compactly generated and C(S) embeds
isomorphically in C(£2). Hence it follows from Corollary 2.10 that the unit ball of
C(S) with respect to the weak* topology is Eberlein compact. The space S
embeds in the unit ball of C(S)*. Thus S is Eberlein compact.

2.12. ReMARK. The existence of a bounded linear operator T: X* — co(I),
such that T is one-to-one and weakly*-weakly continuous implies that X is
W.C.G. This fact, together with Rosenthal’s well-known example (in [6]) of a
non-W.C.G. subspace of a W.C.G. space, explains why Theorem 2.9 cannot be
linear.

2.13. REMARK. Recently M. E. Rudin has proved that if a space is normal,
countably paracompact, and homeomorphic to a subspace of c¢o(I') in its weak
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topology, then every perfect (i.e. such that its inverse set function maps compact
sets to compact sets) image of this space is homeomorphic with a subspace co(I')
in its weak topology. It is interesting in this connection that in the proof of our
‘basic theorem 2.9 we need an interpolation property of semicontinuous func-
tions that in fact is equivalent to the property of normality together with
countable paracompactness (e.g. see p. 172 in [4]); this raises the question
whether there can be some more essential connection between our methods, and
results established by M. E. Rudin.

Added in proof. 1t was pointed out by the referee that another proof of the
Benyamini-Rudin-Wage Theorem appears in: S. P. Gulko, On properties of
subsets of X-products, Soviet Math. Dokl. 18 (1977), 1438.
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